
 

131 www.medfak.ni.ac.rs/amm 

Review article UDC: 615.832:616-089.843 

doi:10.5633/amm.2019.0118 

 
 

 

 
 

THE EFFECT OF TEMPERATURE TREATMENT OF XENOGENEIC BONE 
SUBSTITUTE ON THE TISSUE RESPONSE – A MINI REVIEW 

 
Mike Barbeck1, Željka Perić-Kačarević2, Faraz Kavehei3, Patrick Rider4, Stevo Najman5, 

Sanja Stojanović5, Denis Rimashevskiy6, Sabine Wenisch7, Reinhard Schnettler8 

 

 
In general, it has been revealed that interaction of bone substitute material with the 

host immune system is dependent upon their physico-chemical properties. In the case of xeno-
grafts, different purification methods are applied to process the precursor tissue. One puri-
fication method that differs the most is the applied temperature. Materials treated with low and 
high temperatures are available. In this context, the question remains as to the influence of the 
different temperature treatments on the physical and chemical material properties and, thus, 
on the tissue reactions during the healing processes. It has been hypothesized that materials 
that induce mononuclear cells induce physiological healing processes, while a pathological re-

action is accompanied with the induction of multinucleated giant cells (MNGCs). In this mini-
review, the focus is on the comparison of preclinical research into tissue reactions to sintered 
and non-sintered bovine-derived xenograft. Interpretation of this data showed that an induction 
of higher numbers of MNGCs by sintered xenograft also induced a higher implant bed vascu-
larization. Finally, the higher number of MNGCs and increased vascularization presumably 
resulted in a higher expression of anti-inflammatory molecules that may support the process of 
bone remodeling. 
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Introduction 
 
Bone tissue is a hard tissue and a type of den-

se connective tissue which has the ability to grow 
and heal itself in the case of minor defects. However, 
more pronounced bone defects and bone augmen-
tation sites require a scaffold as a platform for bone 
regeneration. Bone substitution means the implanta-
tion of substitute materials into bone defects with 
the aim of allowing defect regeneration, ideally up to 
the condition of restitution ad integrum, i.e., the 
complete bone defect healing. A large variety of bone 
substitute materials are nowadays available on the 
market. Bone grafts can generally be classified based 
on their origin. Bone substitute materials can origi-
nate from autografts, allografts, xenografts and syn-
thetic grafting materials. An autogenic graft is harv-
ested from the patient itself, i.e., most often from 
the iliac crest bone. However, its harvesting is often 
accompanied with the effects of a surgical interven-
tion, such as pain or infections at the donor side (1, 
2). Furthermore, an allograft is derived from the 
individuals of same species, i.e., most often living 
human donors. Xenografts are derived from non-
human species, i.e., mostly animal sources such as 
bovines. In contrast, synthetic grafting materials are 
manufactured mostly based on calcium phos-phates 
such as hydroxyapatite (HA) or beta-trical-cium pho-
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sphate (β-TCP) as these compounds are parts of the 
natural mineral component of bone tissue (3).  

In general, an optimal bone graft should be 
easy to handle and should become incorporated, re-
vascularized and integrated (4). Additionally, it should 
be biocompatible, non-immunogenic, physiologically 
stable and in simple words, it should be acceptable 
by patient and without the risk of disease transmis-
sion (4). 

Interestingly, it has already been revealed 
that both “natural” bone substitute materials such as 
bovine-based xenografts and synthetic grafting ma-
terials induce an immune response within the im-
plantation bed of the recipient, called a “foreign body 
reaction to biomaterials” (5, 6). In this cascade, ma-
crophages and their fused relative cell type, the so-
called multinucleated giant cell (MNGC), have mani-

foldly shown to be involved (5). It has been revealed 
that both these cell types are regulatory elements of 
the tissue reaction cascade as they express pro- and 
anti-inflammatory molecules that guide the cascade 
and, thus, the bone healing process (Figure 1.) (5, 
7). In this context, it has been shown in more detail 
that the severity and the inflammatory alignment of 
the material-associated tissue reaction cascade is 
mainly influenced by different physical and chemical 
properties of bone substitute materials, such as their 
chemical composition, the granule size or the gra-
nule porosity, amongst others (8-10). Interestingly, 
these physicochemical properties of a bone substi-
tute have also shown to have importance for the 
clinic as these factors have influence on the bony 
regeneration process (5, 11). 
 

 
 
 

 
 
Figure 1. Schematic illustration of the correlation between cellular and inflammatory processes caused by bone materials, 

the process of implant bed vascularisation and the process of bone tissue regeneration 

 
 
 

In case of both allo- and xenografts, the do-
nor tissue has to be purified from immunologically 
effectual components such as cells or different pro-
teins prior to their application as a bone graft mate-
rial. Xenografts based on bovine donor tissue or bo-
vine hydroxyapatite (BHA) are widely used and rese-
arched bone substitute materials due to their similar 
physiochemical properties compared to human bone, 
their osteoconductivity potential and availability (12). 
Two of the most popular and commonly used bo-
vine-derived xenografts are Bio-Oss™ (Geistlich Bio-

materials, Wolhusen, Switzer-land) and cerabone® 
(botiss biomaterials, Berlin, Germany). Although it 
has been shown that both these bovine-derived bone 
substitutes provide acceptable regenerative poten-
tial, there are still essential differences in their purifi-
cation processes (13, 14). The most prominent vari-
ation in these processes is the treatment of the pre-
cursor bone tissue at different temperatures. While 
Bio-Oss™ undergoes a low heat treatment with tem-
peratures around 300 °C, cerabone® becomes treat-
ed at temperatures of up to 1250 °C (so-called 
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“sintering”) (15, 16). Based on the different tempe-
rature treatments, it is presumable that there are 
differences in the material structure, subsequent tis-
sue reactions and maybe in the healing capacity of 
both materials. The present mini-review aims to com-
pare the tissue reactions to these two xenogeneic 
bone substitute materials and gives an overview of 
preclinical results. 

 
The preparation processes of the xenogeneic 
bone substitute materials  

 
In order to have a successful bone substitute 

produced from natural sources, it is extremely crucial 
to carry out physical and/or chemical treatments in 
order to remove all organic material and immuno-
logically active contents, such as pathogens and 
cells. Most often, only the mineral content of the for-
mer bone tissue remains and should function as a 
bone substitute. Interestingly, different purification 
methods are applied for manufacturing of the availa-
ble xenogeneic bone substitute materials.  

In case of Bio-Oss™, an initial purification step 
that includes a heat treatment with temperatures up 
to 300 °C and a further cleansing step by means of a 
strongly alkaline agent, sodium hydroxide (NaOH) 
are applied (17). In this context, it has been stated 
that the treatment of the bovine bone matrix at 
lower temperatures, as in case of Bio-Oss™, leads to 
the preservation of the mineral crystals of the bone 
matrix (18). However, it has been revealed that the 
crystallinity changes during the heat treatment, al-
though the bone substitute material consists of pha-
se-pure hydroxyapatite (HA) (19). In contrast to hu-
man bone, the heat-treated HA causes an in-crease 
of the crystal size by 200 – 300%, quantified via 
transmission electron microscopy (TEM) and X-ray 
diffraction (XRD) measurement (19). 

For the synthesis of cerabone®,a two-stage 
heat-based process, including an initial oxidative 
combustion at temperatures around 800 °C and a 
second heat treatment at higher temperatures of up 
to 1,250 °C (sintering), is applied (20). Although ce-
rabone® also consists of 100% HA, further differ-
ences in the crystallinity have been revealed (19). A 
larger increase of the crystal size by 500-1000% and 
a higher crystal density in comparison to human 
bone have been measured, which leads to the con-
clusion that cerabone® is comparable to a ceramic-
based material (21). 

 
Results of preclinical in vivo studies 
 
The inflammatory tissue reactions to both xe-

nogeneic materials have comparatively been analyz-
ed using the subcutaneous implantation model and 
established histomorphometrical methods (7-10, 13, 
14, 16, 21-26). Different numbers of multinu-cleated 
giant cells (MNGCs), which showed partial expres-
sion of the lytic enzyme tartrate-resistant acid phos-
phatase (TRAP), have been found besides a large 
number of mononucleated cells such as macropha-
ges (26). The comparative measurements showed 
initially that larger numbers of (TRAP-positive) 
MNGCs were found in the case of Bio-Oss™, which 
was related to the smaller material particles trig-

gering the tissue reaction even at early study time 
points, while their numbers significantly decreased at 
later time points. In contrast, comparatively high 
numbers of MNGCs were found within the implant-
ation beds of cerabone® starting after 10 days post 
implantationem. However, the MNGC numbers did 
not decrease with time and remained at a compa-
rable level up to 60 days post implantationem. Inte-
restingly, implant bed vascula-rization also differed: 
while a fast and continuously high implantation bed 
vascularization was measured for Bio-Oss™, vascu-
larization was initially low and increased over time to 
a high level in case of cerabone®.  

Moreover, it has been shown that the MNGCs 
in the implant bed of Bio-Oss™ seem to be foreign 
body giant cells (FBGCs), as also found in case of a 
synthetic hydroxyapatite-based bone substitute, which 
indicates that the different treatments based on dif-
ferent physical and chemical methods lead to a con-
version of the former bone matrix in the direction of 
a foreign material (7). In this context, it is possible 
that the MNGCs found in the implant beds of cera-
bone® are also FBGCs. However, it has been shown 
that this cell type is not restricted to express only 
pro-inflammatory molecules but also anti-inflamma-
tory mediators such as the vascular endo-thelial gr-
owth factor (VEGF) or the mannose receptor (MR, 
CD206), which leads to a related increased implant 
bed vascularization (22). Thus, it is pres-umable that 
a higher induction of MNGCs also might also cause a 
better bone regeneration, as implant bed vasculari-
zation is a key component for (bone) tissue regene-
ration (27, 28). Interestingly, the first results of a 
new study also confirm this theory, as it could be 
shown that a higher severity of a material-related 
inflammatory process, including MNGCs, supports di-
rectly and indirectly the bony regene-ration process 
(unpublished data by Barbeck et al.).  

Different preclinical implantation studies have 
been conducted to evaluate the material-related bone 
growth by means of Bio-Oss™ and cerabone® (Table 
1) (29-39). In the case of cerabone®, only a few pre-
clinical in vivo studies quantitatively analyzing bone 
regeneration have been conducted (Table 1) (29, 
30). Interestingly, these studies report very diverse 
results. The studies give the range of newly built bone 
using cerabone® at different time points to be; 0 and 
40% for between 21-28 days, 14-78% between 42-
84 days and finally 21–30% for up to 168 days 
(Table 2) (29, 31, 39). In contrast, a variety of in 
vivo studies have been carried out to analyze the 
bone regeneration capacities of Bio-Oss™ (Table 1) 
(32-38, 39). A comparable variety of histomorpho-
metrical results have been presented as in case of 
Bio-Oss™ (Table 1). Altogether, percent values of 
newly built bone tissue are between 8 and 34% for a 
time frame between 14-30 days, 4-57% for a time 
frame between 42-84 days and finally 39-47% for 
the time frame between 112-168 days have been 
found (Table 2) (32-38, 39). Altogether, the compa-
rison of these preclinical data shows comparable 
bone healing capacities for both bone substi-tute 
materials (Table 2). However, even in case of cera-
bone®, more studies are necessary to evaluate the 
healing properties of this xenograft treated at high 
temperatures. 
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Table 1. Overview of preclinical in vivo studies analyzing the bone healing capacities of both xenogeneic bone substitutes 

 

Implantation model Time point(s) Bone growth Authors 

Cerabone    

Calvarian critical size defect model, 
rat 

28 and 56 days 
28 days (42.10%)  

56 days (77.60 %) 
Shakir et al. (31) 

Calvarian critical size defect model, 
rabbit 

60 days 55% Huber et al. (29) 

Periapical implantation model, cat 84 and 168 days 
30.2%  5.7% at the grafted 
membrane-protected sites 

Artzi et al. (30) 

Bio-Oss, Cerabone    

Calvarian critical size defect model, 
rabbit 

21 and 42 days 

cerabone® 60.6% new bone 
growth for  

BioOss® 52.1%  new bone 
growth for 

Institute of Bone 
Scienc, Seoul, Korea 

Bio-Oss    

Calvarian critical size defect model, 
rabbit 

14 and 28 days 
14 days (8.6  3.1%)  

28 days (15.7  5.4%) 
Park et al. (c) (34) 

Calvarian critical size defect model, 
rabbit 

28 days 11.7  2.4 % 
Rokn, Khodadoostan 
(35) 

Calvarian critical size defect model, 
rabbit 

28 and 56 days 
28 days (12.9  5.8%)  

56 days (14  7.2%) 
Park et al. (b) (33) 

Calvarian critical size defect, rat 30 and 60 days 
30 days (54.05%  5.78)  

60 days (63.58%  5.78) 
Oliviera et al. (36) 

Calvarian critical size defect, rat 42 and 84 days 
42 days (6.4  4.3%)  

84 days (8.2  3.9%) 
Park et al. (a) (32) 

Calvarian critical size defect model, 
sheep 

84 and 168 days 
84 days (21 ± 1.2 %)  

168 days (39 ± 3.3 %) 
Scarano et al. (38) 

Calvarian critical size defect, rat 112 days 47.4  7.1 % Mah et al. (39) 

Calvarian critical size defect model, 
rabbit 

8 weeks 57.76 ± 7.75 % Takauti et al. (37) 

 
 
 

Table 2. Comparison of the preclinical in vivo data 

 
 Bio-Oss cerabone 

14 – 30 days 8 – 34% (18.69%) 0 – 40% (20%) 

42 – 84 days 4 – 57% (23.76%) 14 – 78 % (46,56%) 

112 – 168 days 39 – 47% (43.2%) 21 – 30% (25,9) 
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Conclusion 
 

The sintering temperature of bone substitutes 

including bovine hydroxyapatite based materials has 
shown to be an important parameter that can affect 
the properties of HA. In this context, the sintering 
temperature has influence on phase stability, densifi-
cation behavior, crystallinity and porosity of HA. The 
data outlined in the present mini-review show that 

the heat treatment at different temperatures influ-
ence the tissue response to the bone matrix based 
bone substitute materials. Although it has been shown 
that both Bio-Oss™, which is purified at tempera-
tures of 300 °C, and cerabone® with a treat-ment at 
1250 °C, allow for comparable outcomes of bone 
healing, the number of the MNGCs and the related 

implant bed vascularization seem to be influenced by 

the material differences, induced by the different 

temperature treatments. Thus, it is also conceivable 
that variations in the expression of pro- and anti-in-
flammatory molecules by both macrophages and 
MNGCs are induced by these material differences. 
Thus, the question arises as to how the temperature 

treatment affects material properties to be more 
favorable for optimal bone tissue regeneration. 
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Uopšteno govoreći, otkriveno je da materijali za zamenu kosti izazivaju interakcije sa 

imunskim sistemom domaćina zavisno od njihovih fizičko-hemijskih osobina. U slučaju kseno-
grafta, primenjuju se različite metode prečišćavanja za obradu izvornog tkiva. Jedna od naj-
zastupljenijih metoda koja se primenjuje za njihovo prečišćavanje je termička, pošto se do-
stupni materijali tretiraju zagrevanjem na različitim temperaturama. U ovom kontekstu ostaje 
pitanje kako različite temperature tretmana mogu da utiču na fizička i hemijska svojstva 
materijala, a time i na reakcije tkiva na njih i procese lečenja. Pretpostavljeno je da materijali 
čiju tkivnu reakciju karakterišu mononuklearne ćelije izazivaju fiziološke procese zarastanja, 
dok uz patološku reakciju ide indukcija multinuklearnih gigantskih ćelija (MNGC). U ovom mini 
pregledu fokus je na komparaciji tkivnih reakcija na sinterovane i nesinterovane goveđe 
ksenografte u pretkliničkim ispitivanjima. U tumačenju ovih podataka pokazalo se da indukcija 
većeg broja MNGC pomoću sinterovanog ksenografta indukuje i veću vaskularizaciju ležišta 
implanta. Konačno, veći broj MNGC i veća vaskularizacija, zajedno sa verovatno većom eks-
presijom antiinflamatornih molekula mogu podržati proces remodelovanja kostiju. 
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